COMP4133 Information Retrieval

Technical Report

Kindly note that the source code of this
project will not be available since it may

break the rules.

Contents

B [4 ¢ Yo 171 oY TP SN 3

. Search ENgine Archit@Cturecciiiiiiiieeeeiiiiiiiiiiirieeiinseerre s ass s e s sass e e s s s e 4

« Retrieval MOdElS ... s s s s s s sssssssssssssssssssssssssssssssssnss 7
O 1o o) [=To T 1Y, Lo To =] PSR PSPRURRN 7
3.1.1 RANKING TECANIGUESeeeiiieiiieiteettt ettt ettt st et s e e st st e e saneesabeesanee e 11

3.2 VECLOr SPACE MO ...ttt sttt ettt s e st s e s e e e s 12
3.2.1 RANKING TECANIGUESeeiiieeiiieiteete ettt sttt st e st st e e st e sabeesaneesabeeeaneenas 14

3.3 FUZZY BOOIEAN MOGE ...ttt sttt e st e e 14
30 70 N [4 o T ¥ or o Y KPR 14
I T @ 1= T3 1Y T Yo 1= SRS 15
3L3LB AIBOIIENIM o sttt s e et sab e e s ane e sareeearee e 16
1Yo Vo T Lol 1Y Lo Yo L1 SRR 16
BLA. 1 INEFOTUCTION ittt ettt sab e e st e e sab e e s ab e e sabeesabeesabeesaseesaseesnneenas 16
3.4.2 Techniques and ANGIYSIS......coiuiieieiiiie et e e e e e e e e saae e e e snbaeeeenreeeennnees 17
3.4.3 EffectiVe EVIAENCE ..oocuiiiieeiii ettt ettt et e sab e st st e saneesabeesnnee e 18

B o3 o L= 4143 =T o N 19
4.1 EXPEIIMENTAI DESIGNveeeeveeeeeee e et eettte e te e e sttt a e ettt e e sasteaessteaessastaassassaasssnsenanas 19
4.1.1 Retrieval Program EXECULIONccivcueiiieiiieecciee ettt etee st e e et eseaee e e saae e e s snaee e ennes 21

4.2 EXPErimeNt ENVIFONIMENTcc.uuueiieiieeeeeeiiiieee e eeseiitttee e e e sttt ae e e e e sssstteaaeesssssssstneessssssssssneeeens 25
4.3 EXPEIIMENTAI RESUIL ...ttt e e ettt e e et e e e et e e e ssteaessasteaesnseaessasenaaas 25
e T8 A I 14 LT =Y & ol =T xRS 25
4.3.2 TREC EValU@tion RESUIt.cc..eeiiiiiiiieiieeeiee ettt sttt saee s 26

Y To] YA K3 S 30

B 0o T Vel 11T T T 35

1. Introduction

This report is to introduce and explain the search engine we implemented in details, which
will include its architecture, retrieval models and the experiment results. And this report will
also compare and analyze the advantages of one retrieval model over the other by numerical

measurements and different evaluations.

The whole system was entirely developed in Java, and to further adapt different
implementation, the system has three optional retrieval models: Boolean, Fuzzy Boolean and
Vector Space retrieval models, as well as an advanced model that was innovated by us and

with the hope of improving the effectiveness and usage of our system.

At the end of the section, the report will be about the management of this project.

2. Search Engine Architecture

The architecture organized the process of retrieving results.

post.txt

4

PostTextPreprocessor

Y

file.txt invertedFile.txt
Corpus
TREC query file v
601 Turkey Iraq water
602 Czech, Slovak sovereignty _ .
603 Tobacco cigarette lawsuit = PorterStemmer g The Search Engine
604 Lyme disease arthritis

T or TDN files

The Search Result File

A\

601 Q0 LA032190-0072 1 0.025218166985506094 HKPU-1
601 Q0 LA122690-0032 2 0.01687619628985081 HKPU-1
601 Q0 FBIS4-19170 3 0.013679886041997187 HKPU-1

We would preprocess postl.txt, and create a new inverted file, which would be the content
of the corpus together with file.txt. We use porter stemmer for processing queries. After

running the program, it will produce the search result file, which can be used for evaluation.

Data classes, which are essential for models to process data with different format.

foara\

@ Query

+ querylD: String
+query: ArrayList<String>

@ PostTextPreprocessar

+main(String[] args): void
+ preprocessPostTxt(String): HashMap<String List<WordMetadata>>

+wordDictToF ile(HashMap<String List<WardMetadata>>): void + Query(String, String)

© Corpus

- filelD_DocumentMap: HashMap<Integer, Document>
- invertedindex: HashMap<String, List<WordMetadata>>
- documentLengths: HashMap<Integer,Dauble>

© Gt) + Corpus() // Constructor

- parseFileTxt(): HashMap<Integer Document>

- initinvertedindex(): void

- calculateDocumentLength(): void

+ getDocumentLength(): HashMap<integer Double>
+ getinverseDocumentFrequency(String): double

+filelD: int
+occurrence: int
+wordPositions: ArrayList<integer>

+WaordMetadata(int, int, ArrayList<integer>)

© Resources

+ static final String postPatn

+ static final String invertedFilePath

+ static final String filePath

+ static final String queryFilePath

+ static final String queryTDNFilePath

@© searchRresutt

+filelD: int
+score: double

+ SearchResult(int, double)

+getFilelD(): int
+getScore(): double

+ getDocuments(): ArrayList<Document>

+ getinvertedindex(): HashMap<String, List<WordMetadata>>

+ readinvertedFile(File): HashMap<String, List<WordMetadata>>
+ getTRECFilelD(int): String

@ Document

-intfilelD / Actual order of how the file infarmation are listed in file txt
- int docLength #/Document Word Count

- String docID # Actual Record ID for TREC Programs

- String path // Path to the file for TREC Programs

+ Dacument(int, int, String, String) /#/ Constructor

Data Preprocessing

We choose to preprocess postl.txt and create a new inverted file based on the format below

4. invertedFile.txt

Field name: | Term: | File-id/ | Occurrence/ | Word position, File-id/ Occurrence/ | Word position,
Word position, Word position,
Example: Kosta: | 16358/ | 2/ 422,496 32398/ 1/ 34

In the data directory, we have 7 classes, which would be used by our numerous models in

data processing.

The Corpus class denotes a corpus of documents, as its name suggests, and we have three
fields in this class:

1. filelID_DocumentMap (HashMap), which maps fileID to TREC document.

2. invertedindex (HashMap), which maps a term to a list of WordMetadata.

3. documentLengths (HashMap), which maps filelD Integer to Document Length.

The WordMetaData class is comprised of individual postings, each of which consists of a file

ID and payloads. In our implementation, the payloads include
1. TF (term frequency);

2. The position of every occurrence of the term in that document.

The Document class, which is a class to abstract documents, and we have 4 fields in this
class:

1. fileID (Document ID/File ID - Actual order of how the file information are listed in file.txt)
2. docLength (Document Word Count)

3. doclD (Actual Record ID for TREC Programs)

4. path (Path to the file for TREC Programs)

The Query class is used for abstracting every query.
The SearchResult class is used for abstracting the search results.
The Resource class is used to store the paths of files.

The PostTestProcessor class is used to preprocess the postl.txt and generate inverted file.

3. Retrieval Models

3.1 Boolean Model

The Boolean Model uses “OR”, “AND”, “NOT” to do searching. We find in the query files,
however, that the short queries and long queries do not explicitly use “OR”, “AND”, “NOT” to
do searching. In our Boolean Model, we only choose “OR” to do searching, for example input
“Turkey Iraq water”, the Model will identify it as ““Turkey” OR “Iraq” OR “water””, that
means if any one of these three words matches any documents, the Boolean Model see that

document as a result and output that result.

Typically, a normal Boolean Model does not have similarity score function, but we managed
to create a formula for Our Boolean Model to calculate the similarity score, the formula is:

Score = word of document matched by the query / The input word count of query

Here, we will demonstrate how to get top search results from Boolean Model.

© BooleanModel

- corpus: Corpus

- queryLength: int

- queryResults2: List<WordMetadata>

- counter2: Map<Integer, Integer>

- resultForAllldScaore: Map<Integer, Double>

- resultForTop1000IdScore: ArrayList<SearchResult>
- resultCounter: int

- calScore(): void

+ BooleanModel(Corpus)

+ getResult(ArrayList<String>): SearchResult[]
- getResultinMapByTerm(String term): void

- counterOfQuery2(): void

- getTop1000Result(): void
- printTop1000ScaoreResult(): void

Attributes of BooleanModel:

Attribute

Description

private Corpus corpus

This is corpus

private int queryLength

Used for storing the word count of query.

private List<WordMetadata>

queryResults2

Used for storing the corresponding inverted index of a
target term after running getResultinMapByTerm(String

term).

private Map<Integer, Integer>

counter2

Used to store the occurrences of the document ID

appear in queryResults2.

private Map<Integer, Double>

resultForAllldScore

Used to store all similarity score between the query and

the retrieved documents.

private

ArrayList<SearchResult>

Used to store top 1000 results of resultForAllidScore.

resultForTop1000ldScore

private int resultCounter Used to store the number of results.

Methods of BooleanModel:

getResult method details

public SearchResult[] getResult(ArrayList<String> querys)

This method can be considered as the main method of this class, it has the responsibility to

run other methods to search documents, calculate similarity score and get top 1000

searched results.

It will return SearchResult[] topResults, which is top 1000 searched results.

getResultinMapByTerm method details

private void getResultinMapByTerm(String term)

In this method, it will get the corresponding inverted index of a single term and append the

result into the List<WordMetadata> queryResults2.

counterOfQuery2 method details

private void counterOfQuery2()

In this method, it will count the occurrences of same filelD in Array queryResults2 and then

append the result into Map<Integer filelD, Integer occurrences> counter2.

calScore method details

private void calScore()

In this method, it will calculate the similarity score between the query and the retrieved

documents.

The similarity score formula:

Let X = the occurrences of corresponding filelD in Array queryResults2 (it is stored in
counter2)

Let Y = The word count of query (if query is “Turkey Iraq water”, that mean there are 3
words)

Similarity score =X /Y

Finally, the similarity score of between the query and the retrieved documents will be

append into Map<Integer documentID, Double score> resultForAllldScore.

getTop1000Result method details

private void getTop1000Result()

This method is to load top 1000 results in resultForAllldScore and store these top 1000

results into ArrayList<SearchResult> resultForTop1000IldScore.

This is the sequence diagram of the Boolean Model class.

10

BooleanModel SearchResult
|
It |

3.1.1 Ranking Techniques

In the normal Boolean Model, there is no ranking and similarity score function to do the
ranking of each query. To achieve ranking, we use the first in first out, which does not
consider the similarity score and only considers the order of the No. document.

For example, there is two matched document — “FT923-5358” and “LA122690-0032". The

Boolean Model will see the “FT923-5358" as rank 1 and “LA122690-0032" as rank 2.

11

3.2 Vector Space Model

Here, we will demonstrate how to get top search results from vector space model.

@ VectorSpaceModel

- Corpus corpus;

+ VectorSpaceModel(Carpus) // Canstructor

+ getSearchResults(ArrayList<String> query): ArrayList<SearchResult>
+ getTopSearchResults(ArrayList<String> query): SearchResult[]

- getTermDotProductRanking(String term): HashMap<Integer,Double>

As for the logic of this class, simply put, we iterate all the query terms that have been
processed with Porter Stemmer, and we incrementally compute cosine similarity score of
each document as query words are processed one by one. We store the information in hash
map, the file ID as the key and score as the value. Finally, we will get the top search result

based on that.

When we initialize this class, the constructor will take the Corpus as parameter and assign it

to the local field.

getSearchResults method details

public ArraylList<SearchResult> getSearchResults(ArraylList<String> query)

In this method, we firstly iterate all the terms in the query, and then it will invoke and get the
HashMap from a method called getTermDotProductRanking in each iteration loop. According
to the results of each iteration loop, the key/value will be merged as well in the

HashMap<Integer,Double>. The dot product will be normalized and sorted, and the result

will be returned as an array list.

getTopSearchResults method details

public SearchResult[] getTopSearchResults(ArrayList<String> query)

In this method, we will get the array list of SearchResult from the getSearchResults method,
and we will compute the size of this array list. If it’s larger than or equal to 1000, we will only
get the first 1000 results and omit the rest one. We will accept all if the size is smaller than

1000. And we will return the top search results for creating TREC search result.

getTermDotProductRanking method details

private HashMap<Integer, Double> getTermDotProductRanking(String term)

In this method, it will check if the word can be found in the corpus. If there is no such

term(key) in the inverted index, it will return an empty HashMap. If there is such a key, it will

return a HashMap<Integer, Double>, the key of which is file ID, and the value is TF*IDF.

The sequence diagram of this class is as follows.

13

VectorSpaceModel m SearchResult

3.2.1 Ranking Techniques

The ranking of the documents is based on sorting the document’s cosine similarity scores
produced by the vector space model in descending order. So, the document with the highest

score is 1°tin rank and the lowest is the last in rank.

3.3 Fuzzy Boolean Model

3.3.1 Introduction

The fuzzy Boolean model parses the query and calculates scores for each document based on
the membership function. In our implementation, the membership function is defined as the
term weight divided by the term weights in all documents. For example, for a query word

“turkey” and 3 relevant documents. Our model will calculate the term weights of “turkey” in

14

all 3 documents as t1, t2 and t3. Then, the term weights after being processed by the
membership function should be t1/(t1+t2+t3), t2/(t1+t2+t3), t3/(t1+t2+t3).

For the short and long query, this membership function has proved itself to work well.

Note that the ranking criteria is same as Boolean model, based on the score of each
document.

3.3.2 Class Model

The graph below shows the UML diagram of the java class model. The BooleanOperator is an
enumerator class including five major members, AND, OR, and NOT, left and right
parenthesis (‘(‘and ‘)’).

The FuzzyBooleanModel is the processor class which parses the query string and outputs the

top search results based on the algorithm.

¢ “ FuzzyBooleanModel

m ‘% FuzzyBooleanModel(Corpus)

m & buildOperand(String) double(]
m ‘& main(String[]) void
m = processQuery(String) ArrayList<SearchResult>
m & membership(double[]) double[]
m & doAND() void
m & doOR() void
m = getTopSearchResults(ArrayList<String>) SearchResult(]
m & doNOT() void

= ° BooleanOperator

m = BooleanOperator()
m ‘% valueOf(String) BooleanOperator
m © parse(String) BooleanOperator

m = values() BooleanOperator(]

15

3.3.3 Algorithm

The algorithm is divided into two major components. The first component is parsing the

input query string. The second component is calculating the scored based on the term and

boolean operators.

For the query string parsing, the algorithm has two stacks initially. One for boolean

operators, and the other for the operands. The operand is a double array storing the scores

of each document for a query word. When the algorithm encounters a boolean operator, the
operator is pushed into the operator stack for later calculation. When the algorithm
encounters a word, it will build an operand, which is a double array representing the
membershiped scores for each document.

The algorithm will perform a calculating when it encounters one of the following situations.

1. The top of the operator stack is “NOT”, and the operator stack in not empty.

2. The top of the operator stack is “)” (right parenthesis) . If this happens, then the
algorithm will keep doing calculating until “(“ (left parenthesis) is met.

3. The query string is ended. The algorithm will keep doing calculating until the operator
stack is empty. If the query string is valid, then the operand stack will have one operand
array only, which is supposed to be the overall scores.

The algorithm will throw out an exception if one of the following situation is met.

1. The right paranthesis is met but there is no left parenthesis in the operator stack.

2. There are consecutive AND, OR. (for example,w1AND OR w2 is invalid)

3. NOTis followed by AND, OR.

In the end, the algorithm will return a sorted array containing 1000 documents along with

their scores to the caller.

3.4 Advance Model

3.4.1 Introduction

In the advance model part, we are inspired from pseudo relevance feedback. We will make

use of automatic feedback to expand the query, which will make the query more specific. We

16

first get the search result of the vector space model, then expand the query according to the

search result.

(©) FeedBackvsm

- Corpus corpus;
- int N;

+ FeedBackVSM(Corpus) // Constructar

+ getFeedback(SearchResult[], ArrayList<String>). ArrayList<String>

+ getSearchResults(ArrayList<String> query): ArrayList<SearchResult>
+ getTopSearchResults(ArrayList<String> query): SearchResult[]

- getTermDotProductRanking(String term): HashMap<Integer Double>
+ getTopSearchResults 1(ArrayList<String>): SearchResult[]

3.4.2 Techniques and Analysis

STEP 1. Feed the original query into the vector space model and get the top1000 relevant

files. (We will use TFA2*IDF as the score.)

STEP 2. After obtaining the ranked searching results of the vector space model, we will
calculate the document frequency of each term in the query, if the document frequency is
larger than 0.1, then we will delete the term, since it implies the term is a very general one.

This operation will help us to find more relevant documents.

STEP 3. We will choose the most relevant document in our first search, then we will calculate
the TF-IDF score for each term, then we will add the top3 highest score term into the

original query (we assume these terms are also related to the user’s query).

STEP 4. In the new modified query, we will delete the term with large document frequency

as we did in step2. After that, we will use the modified query to search for the result.

The reason we choose to expand the original query is that:

There are only a small number of terms in a query, which means the given information is
limited. When we want to find a relevant file, we may want to use more information to help
us get the most relevant one. For example, when we want to use the query “Turkey Iraq

water” to find files containing news of water issues between Turkey and Iraqg, we can provide

17

more information such as “Euphrates”, “hydropower station” to enhance the searching

process. Even if we have preprocessed the query using porter stemmer, we cannot manually

add new terms to the query. Then we use the top1 relevant files in the search result to

provide more information for the search engine.

3.4.3 Effective Evidence

The result of our advanced model is better than vector space model, boolean model and

fuzzy boolean model.

PS Microsoft.PowerShell.Core\FileSystem::\\Mac\Home\Desktop\trec_sample> .\trec_eval_cmd.exe

Queryid (Num): All

Total number of documents over all queries
Retrieved: 87969
Relevant: 3720
Rel_ret: 2552

Interpolated Recall - Precision Averages:
at 0.00 0.2780
at 0.1 0.1696
at 0.2e 0.1385

.30 0.1e49

0.U8 0.0900

.50 0.0794

0.60 0.0659

.70 0.es5e4

.80 0.0377

.90 0.0223

.ee 0.0096

Average precision (non-interpolated) for all rel docs(averaged over queries)

(c]

Precision:
At 5
At 1e
At 15 .1077
At 20 .1051

9.1152
(¢]
c]
]
At 30 0.9953
(c]
]
c]

0.1071

At 1ee .0693
At 200 .8545
At 5ee .9383
At 1000 d 0.0258
R-Precision (precision after R (= num_rel for a query) docs retrieved):
Exact: 0.0950

PS Microsoft.Powershell.Core\FileSystem: :\\Mac\Home\Desktop\trec_sample> .\trec_eval_cnd.exe

Queryid (Num): All
Total number of documents over all queries
Retrieved: 996800
Relevant: 3720
Rel_ret: 2453
Interpolated Recall - Precision Averages:
o. . 2665
1653
-133
1021
0.0837
0.0708
.8560
L0374
.0253
0136
5 0.0026
Average precision (non-interpolated) for all rel docs(averaged over queries)
0.07u4
Precision:
At 5 docs: .1111
At 10 docs: 21131
At 15 docs: .1118
At 20 docs: 0.1091
At 30 docs: 0.0993
At 100 docs: 0723
At 200 docs: .85u2
At 500 docs: .8369
At 1000 docs: .e2u8
R-Precision (precision after R (= num_rel for a query) docs retrieved):
Exact: 9.8993

judgerobust T-Adv.ret

judgerobust TDN-Adv.ret

18

0.10

0.08

0.06 -

0.04 4

0.02

0.00 -

0 200

The above figure shows the interpolated recall-precision plot. (advance model: blue, vector space

model: green, fuzzy boolean model: orange, boolean model: red)

400 600

800 1000

0.25 4

0.20 1

0.15 4

0.10 4

0.05 4

0.00 1

0.0 0.2

0.4 0.6

0.8 1.0

The above figure shows the document-precision plot. (advance model: blue, vector space model: green,

fuzzy boolean model: orange, boolean model: red)

Model Average Precison | R-Precision
Boolean 0.0047 0.0115
Fuzzy Boolean 0.0617 0.0747
Vector Space 0.0680 0.0891
Advance 0.0744 0.0993

4. Experiments

4.1 Experimental Design

The workflow of generating .ret file:

19

Start Program
Load Inverted File

Selection for Retrieval Modes

Vector Space Model

Boolean Model

Fuzzy Beolean Model

Advance Model

Short Query Long Query Short Query Long Query Short Query Long Query Short Query Long Query
T-Bool.ret TDN-Bool ret T-VEM.ret TDN-VSM.ret T-Fuzzy.ret TDN-Fuzzy.ret T-Adv.ret TDN-Adv.ret

The experiment contains the following steps:

1. Runthe program, the program will find the inverted file and read the file data. After

that the program write the inverted file data into the Memory.

2. After the step 1, the CLI interface will display, and user can choose which model they

want to use and use the short queries or long queries. After the choose, the program

will be generating result .ret file and save in /SearchEngine folder. After generating,

the CLI interface will back, user can choose another model and queries, no need do

step 1 again.

3. The generating result is following this step:

1. short queries and Boolean model
2. long queries and Boolean model

3. short queries and Vector Space model

20

4. long queries and Vector Space model
5. short queries and Fuzzy Boolean model
6. Long queries and Fuzzy Boolean model
7. short queries and Advance model

8. Long queries and Advance model

4. The Experimental is end.

4.1.1 Retrieval Program Execution
The experiment is conducted in specific Windows PC and used an IDE to run the program.

Here is the workflow to execute the program and get the TREC search result.

1. Open Intelli) IDEA Ultimate and open the directory GroupCzip/Information-Retrieval-

main/SearchEngine (Do not directly open the Information-Retrieval-main folder)

Project

2 SearchEngine
> .idea
v Src
main
java
Data
Model
Boolean
FeedbackVSM

2. Open the SearchEngineDemo.java file, it locates on SearchEngine/src/main/java/Search/

21

SearchEngineDemo.java

SearchEngine - SearchEngineDemo.java

: Oz 8-
% SearchEngine ~/Downloads/Information-Retrieval-n
dea

s
i3
&
-

3. Click the Build Project on the function bar, after it finished building the project, click Run

on the function bar.

SearchEngine src

main(String[] args

4. The program will read the inverted file to the memory; it takes a while to process.

22

5. There are some options for user to choose the retrieval model that need to execute follow
the instruction, for example if the result needs to be generated from Boolean Model, type

01.

SearchEngine - SearchEngineDemo.java

6. Choose the short query or long query file that needs to generate, for example if the result

needs to be generated by short query which is quertT, type 01 and enter.

23

EngineDemo.java

main(string[] args)

7. The result has been generated and store in SearchEngine folder

T-Bool.ret

8. Repeat the above step to generate short query or long query result from different models.

24

4.2 Experiment Environment

We used the COMP Lab PC for the experiment, specification is below:

Item Description
CPU Inter(R) Core (TM) i7 — 10700 CPU @ 2.90GHz
Operation System Windows 10
Memory 32GB
IntelliJ IDEA Ultimate
IDE Version: 2022.2.4
Build: 222.4459.24
23 November 2022
Java JDK Java 1.8 or Java 17

4.3 Experimental Result

4.3.1 Time-efficiency

Task No. Task Time
1 Read the inverted file data write into the Memory 6 min 52 Second
2 Use short queries and Boolean model generating the 3 Second
result

3 Use long queries and Boolean model generating the 4 Second
result

4 Use short queries and Vector Space Model generating 3 Second
the result

5 Use long queries and Vector Space Model generating 5 Second
the result

6 Use short queries and Fuzzy Boolean model generating | 4 Second

25

the result

7 Use long queries and Fuzzy Boolean model generating 5 Second

the result

8 Use short queries and Advance model generating the 1 min 6 Second

result

9 Use long queries and Advance model generating the 1 min 8 Second

result

4.3.2 TREC Evaluation Result

Put all the .ret file into the TREC evaluation program folder, on Windows CMD run command:
trec_eval_cmd.exe -0 judgerbust XXXX.ret, XXXX which is the .ret file name, will produce

the result.

4.3.2.1 Boolean Model with Short Query

_eval_cmd.exe -o judgercbust T-Bool.ret

(
Total numbe

Rel_ret:
Interpolated Recall ision Averages:

at a.

at i

a.
a.
a.
a.
a.
a.
a.
a.
a.
a.

recision iterpolated) for all rel de (averaged over queries)

@

I = W T o T T o T o T o T e T =
DD DIDD

n after R (= num_rel for a quer docs retrieved):

=]

26

4.3.2.2 Boolean Model with Long Query

sample_uddu® sample»trec_eval_cmd.exe -o judgerobust TDN-Bool.ret

all queries

Interpolated Recall ision Averages:
at

PO

on-interpolate or d over queries)
.8e47

@ .

.B834

.8e14
B8.080067

cision after R (= num_rel for a que
9.0115

DI D

1_cmd.exe -o judgerobust T-VSM.ret

interpolated) for all rel d eraged over queries)

retrieved

27

4.3.2.4 Vector Space Model with Long Query

C Use ason\Dow

_ret:
Interpolated Recal
e.00
.18
28

T DO DD D
¥ 'y N}

Retrieved:

Relevant:

Rel_ret:
Interpolated Recall

e.
e.
e.
e.
e.
e.
e.
e.
e.
e.
e.

nloads’ sample_uddul\trec_sample .exe -0 judgerobust TDN-VSM.ret

1 - 5P

e
e
e
a.
a.
e
e
e
e
e

(non-interpolated) for all rel docs(averaged over guerie
e.8680

e.
a.
a.
e.
e.
a.
a.
e.
a.
e.

retrieved

non-interpolate for : ™ aged over guerie

@

OO

num_rel for a query

28

4.3.2.6 Fuzzy Boolean Model with Long Query

for all

DO D

num_rel for

= E OO
o

@

4.3.2.7 Advance model with Short Query

PS Microsoft.PowerShell.Core\FileSystem: :\\Mac\Home\Desktop\trec_sample> .\trec_eval_cmd.exe

Queryid (Num): ALl
Total number of documents over all queries
Retrieved: 87969
Relevant: 3720
Rel_ret: 2552
Interpolated Recall - Precision Averages:
at .00 .2780
at 10 .1696
at 20 .130e5
at 30 .1e49
at ue . 0900
at 50 .0794
at 60 .0659
at 70 .e5e4
at 8e .8377
at 90 .0223
at 0 . 0096
Average precision (non-interpolated) for all rel docs(averaged over queries)
.0818

HOOOOOO®Od

Precision:
At 5 docs:
At 10 docs:
At 15 docs:
At 20 docs:
At 30 docs:
At 100 docs:
At 200 docs: . 0545
At 500 docs: .0383
At 1000 docs: 0.0258
R-Precision (precision after R (= num_rel for a query) docs retrieved):
Exact: 0.08950

0.1152
0.1071
0.1077
0.1051
0.0953
0.0693
<]

2]

judgerobust T-Adv.ret

29

4.3.2.8 Advance model with Long Query

PS M osoft.Powershell.Core\FileSystem: :\\Mac\Home\Desktop\trec_sample> .\trec_eval_cmd.exe judgerobust TDN-Adv.ret

Queryid (Num): All
Total number of documents over all queries
Retrieved: 99000
Relevant: 3720
Rel_ret: 2453
Interpolated Recall - Precision Averages
at 0.00 . 2665
at 10 1653
at 20 1333
at 30 1021
at ue 0837
at 50 0708
at 60 . 0560
at 70 0374
at 80 0253
at 20

0136
at 00 .0026
Average precision (non-interpolated) for all rel docs(averaged over queries)

0.0744

HEREREE® Q@@
IR - RN -R-R-N-N-N-N-}

Precision:
At 5 docs:
At 16 docs:
At 15 docs:
At 20 docs:
At 30 docs:
At 100 docs:
At 200 docs: a5u2
At 500 docs: 0369
At 1000 docs: 0.0248
R-Precision (precision after R (= num_rel for a query) docs retrieved):
Exact: 0.0993

1111
1131
1118
1091
0993
8723

COOOE6 66

4.4 Analysis

® Short Query Recall-Precision Analysis

Short Query Recall-Precision

Precision 0.2 \

In short query recall-precision, fuzzy Boolean Model has the highest performance compared

to the other models.

® Long Query Recall-Precision Analysis

30

Long Query Recall-Precision

Precision 0.15

000 0.0 00 0.3 0.40 050 0.60 om 0.8 0.90 1.0
Recall

=——GBooleanModel =mmVector Space Model ==—=Fuzzy Boolean Model Advance Model

In long query recall-precision, Advance Model and Vector Space get the similar high

performance compared to the other models.

® Short Query MAP Analysis

Short Query MAP
0.12
0.1084
0.1
0.0818
0.08
0.0693
Precision 0.06
0.0499
0.04
0.02
0
Boolean Model Vector Space Model Fuzzy Boolean Model Advance Model
Model

In short query MAP, Fuzzy Boolean Model has the highest performance compared to the

other models.

® Long Query MAP Analysis

31

Long Query MAP

0.0744
0.068
0.0617

Precision 0.04
0.03

0.02

om 0.0047
o |
Boolean Model Vector Space Model Fuzzy Boolean Model Advance Model

Model

In long query MAP, Advance Boolean Model has the highest performance compared to the

other models.

® Short Query Top 10 Documents Precision Analysis

Short Query Top 10 Documents Precision Analysis

0.18 0.1636

0.16
0.14
0.12 0.1172
- 0.101 0.1071
0.1
Precision
0.08
0.06
0.04
0.02
0

Boolean Model Vector Space Model Fuzzy Boolean Model Advance Model
Model

o
@®

In short query top 10 documents precision, Fuzzy Boolean Model has the highest

performance compared to the other models.

® Long Query Top 10 Documents Precision Analysis

32

Long Query Top 10 Documents Precision Analysis

0.12 0.1131
0.102
0.1 0.0949
0.08
Precision 0.06
0.04
0.0232
0
Boolean Model Vector Space Model Fuzzy Boolean Model Advance Model
Model

In long query top 10 documents precision, Advance Model has the highest performance

compared to the other models.

® Short Query R-Precision Analysis

Short Query R-Precision

014 0.1265

0.12
0.1 0.095
0.0803 0.085
0.08
Precision

0.06
0.04
0.02

0

Boolean Model Vector Space Model Fuzzy Boolean Model Advance Model
Model

In short query r-precision, Fuzzy Boolean Model has the highest performance compared to

the other models.

33

® Long Query R-Precision Analysis

Long Query R-Precision

0.0993
0.1
0.0891
0.08 0.0747
Precision 0.06
0.04
0.02 0.0115
, 1R
Boolean Madel Vector Space Model Fuzzy Boolean Model Advance Model

Model

In long query r-precision, Advance Model has the highest performance compared to the

other models.

34

5. Conclusion

The report has explained the logic and implementation of the models which are Boolean,
Vector Space, Fuzzy Boolean and Advance Model. As for the experiment part, we explained

the method we used for experimenting as well as the result.

